De l’effet Lotus à l’effet Salvinia : quand les plantes inspirent la science et bousculent notre regard sur les matériaux

Décryptage technologique

À la surface des feuilles de lotus se trouvent des aspérités microscopiques qui empêchent l’eau d’y adhérer. Cette découverte a changé notre façon de comprendre comment les liquides interagissent avec les surfaces : ce n’est pas seulement la chimie du matériau qui compte, mais aussi sa texture. Depuis, les scientifiques s’en sont inspirés pour explorer de nouvelles façons de contrôler le comportement des liquides à la surface des matériaux.


La feuille de lotus présente une propriété remarquable : elle s’autonettoie. Les gouttes d’eau, en roulant à sa surface, emportent poussières et autres contaminants, laissant la feuille d’une propreté remarquable.

Il y a près de trente ans, l’explication de ce phénomène, connu sous le nom d’effet Lotus, a été proposée par les botanistes Wilhelm Barthlott et Christoph Neinhuis. Cette découverte a changé profondément notre façon d’appréhender les interactions entre un solide et des liquides. Le défi de reproduire cette propriété autonettoyante, puis de l’améliorer, a été relevé rapidement en science des matériaux.

Depuis, la botanique a encore inspiré d’autres découvertes utiles à des applications technologiques — nous rappelant encore une fois combien la recherche purement fondamentale peut avoir des répercussions importantes, au-delà de la curiosité qui la motive.

De l’effet Lotus à la superhydrophobie

L’explication proposée par Wilhelm Barthlott et Christoph Neinhuis dans leur article fondateur publié en 1997 est finalement toute simple. Elle révèle que l’effet Lotus repose sur une texturation de la surface de la feuille à l’échelle micrométrique, voire nanométrique.

De l’effet Lotus à l’effet Salvinia : quand les plantes inspirent la science et bousculent notre regard sur les matériaux
Une illustration de Nelumbo nucifera Gaertn dans l’Encyclopédie d’agriculture Seikei Zusetsu (Japon, XIXᵉ siècle).
université de Leiden, CC BY

La rugosité correspondant à cette texture est telle que, lorsqu’une goutte d’eau se dépose sur cette surface, elle ne repose que sur très peu de matière, avec un maximum d’air piégé entre la goutte et la feuille. La goutte est alors comme suspendue, ce qui conduit à une adhérence très faible. Ainsi, les gouttes roulent sur la feuille sous l’effet de leur poids, emportant sur leur passage les impuretés qui y sont déposées.

La possibilité de contrôler l’adhérence des gouttes par la simple texturation de surface a rapidement séduit le monde de la science des matériaux, où les situations nécessitant un contrôle de l’adhésion d’un liquide sont extrêmement nombreuses, comme dans le cas par exemple des textiles techniques, des peintures ou des vernis.

Une véritable course s’est ainsi engagée pour reproduire les propriétés répulsives de la feuille de lotus sur des surfaces synthétiques. Cet essor a été rendu possible par la diffusion dans les laboratoires, à la même époque, de techniques d’observation adaptées à l’observation aux échelles des textures ciblées, telles que la microscopie électronique à balayage en mode environnemental, qui permet l’observation d’objets hydratés et fragiles que sont les objets biologiques, ou encore la microscopie à force atomique qui permet de sonder les surfaces grâce à un levier micrométrique.

Ce sont aussi les progrès en techniques de microfabrication, permettant de créer ces textures de surface aux échelles recherchées, qui ont rendu possible l’essor du domaine. Dans les premières études sur la reproduction de l’effet lotus, les chercheurs ont principalement eu recours à des techniques de texturation de surface, telles que la photolithographie et la gravure par plasma ou faisceau d’ions, l’ajout de particules, ou encore la fabrication de répliques de textures naturelles par moulage.

blank
Illustration de fleur de lotus de l’espèce Nelumbo nucifera Gaertn, tirée de l’Encyclopédie d’agriculture Seikei Zusetsu (Japon, XIXᵉ siècle).
Université de Leiden, CC BY

L’appropriation de l’effet lotus par le domaine des matériaux a rapidement orienté les recherches vers la superhydrophobie, propriété à la base de l’effet autonettoyant, plutôt que vers l’effet autonettoyant lui-même. Les recherches se sont d’abord concentrées sur la texturation des surfaces pour contrôler la répulsion de l’eau, puis se sont très vite étendues aux liquides à faible tension de surface, comme les huiles. En effet, les huiles posent un plus grand défi encore, car contrairement à l’eau, elles s’étalent facilement sur les surfaces, ce qui rend plus difficile la conception de matériaux capables de les repousser.

Cette appropriation du phénomène par le monde de la science des matériaux et des enjeux associés a d’ailleurs produit un glissement sémantique qui s’est traduit par l’apparition des termes « superhydrophobe » et « superoléophobe » (pour les huiles), supplantant progressivement le terme « effet lotus ».

Désormais, le rôle crucial de la texture de surface, à l’échelle micrométrique et nanométrique, est intégré de manière systématique dans la compréhension et le contrôle des interactions entre liquides et solides.

La botanique également à l’origine d’une autre découverte exploitée en science des matériaux

Bien que l’idée de superhydrophobie ait déjà été publiée et discutée avant la publication de l’article sur l’effet Lotus, il est remarquable de constater que c’est dans le domaine de la botanique que trouve son origine l’essor récent de la recherche sur le rôle de la texturation de surface dans l’interaction liquide-solide.

La botanique repose sur une approche lente et méticuleuse — observation et classification — qui est aux antipodes de la science des matériaux, pressée par les impératifs techniques et économiques et bénéficiant de moyens importants. Pourtant, c’est bien cette discipline souvent sous-estimée et sous-dotée qui a permis cette découverte fondamentale.

Plus tard, en 2010, fidèle à sa démarche de botaniste et loin de la course aux innovations technologiques lancée par l’explication de l’effet Lotus, Wilhelm Barthlott a découvert ce qu’il a appelé l’effet Salvinia. Il a révélé et expliqué la capacité étonnante de la fougère aquatique Salvinia à stabiliser une couche d’air sous l’eau, grâce à une texture de surface particulièrement remarquable.

fougère d’eau salvinia
Salvinia natans sur le canal de Czarny en Pologne.
Krzysztof Ziarnek, Kenraiz, Wikimedia, CC BY-SA

La possibilité de remplacer cette couche d’air par un film d’huile, également stabilisé dans cette texture de surface, a contribué au développement des « surfaces infusées », qui consistent en des surfaces rugueuses ou poreuses qui stabilisent en surface un maximum de liquide comme de l’huile. Ces surfaces, encore étudiées aujourd’hui, présentent des propriétés remarquables.

La biodiversité, source d’inspiration pour les innovations, est aujourd’hui en danger

L’explication de l’effet Lotus et sa diffusion dans le monde des matériaux démontrent finalement comment, loin des impératifs de performance et des pressions financières de la recherche appliquée, une simple observation patiente de la nature a permis de révéler l’origine de la superhydrophobie des surfaces végétales (qui concerne une surface estimée à environ 250 millions de kilomètres carré sur Terre) — dont il a été proposé que le rôle principal est d’assurer une défense contre les pathogènes et d’optimiser les échanges gazeux.

dessin botanique de Salvinia natans
Illustration de Salvinia natans dans une flore allemande publiée en 1885.
Prof. Dr. Otto Wilhelm Thomé, « Flora von Deutschland, Österreich und der Schweiz », 1885, Gera, Germany

Elle illustre non seulement la richesse de l’observation du vivant, mais aussi l’importance de cultiver des approches de recherche originales en marge des tendances dominantes, comme le souligne Christoph Neinhuis dans un article hommage à Wilhelm Barthlott. Le contraste est saisissant entre la rapidité avec laquelle nous avons réussi à reproduire la superhydrophobie sur des surfaces synthétiques et les millions d’années d’évolution nécessaires à la nature pour y parvenir.

Wilhelm Barthlott, dans un plaidoyer pour la biodiversité, nous rappelle combien cette lente évolution est menacée par la perte accélérée des espèces, réduisant d’autant nos sources d’inspiration pour de futures innovations.

The Conversation

Laurent Vonna ne travaille pas, ne conseille pas, ne possède pas de parts, ne reçoit pas de fonds d’une organisation qui pourrait tirer profit de cet article, et n’a déclaré aucune autre affiliation que son organisme de recherche.

Auteur : Laurent Vonna, Maître de Conférences en Chimie de Matériaux, Université de Haute-Alsace (UHA)

Aller à la source

Artia13

Bonjour ! Je m'appelle Cédric, auteur et éditeur basé à Arles. J'écris et publie des ouvrages sur la désinformation, la sécurité numérique et les enjeux sociétaux, mais aussi des romans d'aventure qui invitent à l'évasion et à la réflexion. Mon objectif : informer, captiver et éveiller les consciences à travers mes écrits.

Artia13 has 2619 posts and counting. See all posts by Artia13